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In this paper, a Bayesian framework is used to infeHiRISE-equivalent rock density
from CTX image features without needing to explicity identify rocks. The statistical
relationship between HIRISE rock density and CTX inage features is modeled using
Bayesian Networks. The model is enriched by inclikg geological features—specifically,
geomorphic units. The geomorphic units are identiftd by geologists based on different
surface features visible in a variety of orbital déa. The inclusion of geomorphology in the
Bayesian framework makes it possible to not only fer HiRISE-equivalent rock density
directly from CTX image features, but also to makea preliminary assessment of the
representative geomorphic units. HIRISE and CTX images of the Mars Phoenix mission
landing area are used in this study. Rock densitystimates from HIiRISE images are used as
ground truth to train the Bayesian Network using features extracted from corresponding
CTX images. The approach is evaluated on a few tesases using a probabilistic estimate of
landing safety based on inferred rock density fronCTX image features. The initial results of
this exploratory study show that predicted landingsafety from the inferred rock density is
very close to that obtained using actual HiRISE rok density estimates.

I. Introduction

L anding site selection is an essential part of tharpng process for a space exploration missiois plocess
involves identifying regions of a planetary surfabat meet the scientific objectives of the missighile
ensuring the payload can be delivered safely. ifyémg landing sites that meet the often stringsafiety criteria for
a mission is a painstaking proces@lanetary orbiters deployed years before a pialesuirface mission are able to
capture reconnaissance data that are indispenahlediciously selecting a landing site. In adiatit to providing
information on sites of scientific interest, orbidata can reveal key landing hazards that mustveeted in order to
ensure vehicle safety. Among potential landing hdgarocks represent a significant risk. Abundaotks at
candidate landing sites were a dominant concerthforecent Mars Phoenix missfoMission planners were able
to quantitatively assess rock hazards at candidatting sites with the aid of images from the Higasolution
Imaging Science ExperiménHiRISE) onboard NASA’s Mars Reconnaissance OrifiéR0). The unprecedented
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resolution (0.3 m/pixel) of HIRISE makes it possiltb identify submeter-scale rocks that may poseazard to
landing spacecraft. The ability to identify indivial rocks in HiIRISE images proved crucial in setegia suitable
landing site for the Phoenix mission. The developimé a robust automatic rock detection algorithprovided a
further boon for the Phoenix landing site selectiwacesd For the Phoenix mission, the rock detection allyor

was used to automatically count ~10,000,000 rook fHIRISE images, which in turn were used to esténrthe

rock density within 100 nx 100 m regions of the Martian surface and ultimagekdict the probability of landing
success.

Despite their high resolution, HIRISE images hawraller span relative to images from other exgstameras
(e.g. Mars Orbiter Cameaand thus cover less surface area. Although drtitta exists for areas of the Martian
surface that HIRISE has not imaged, the resoluganuch lower, making it impossible to resolve daralocks that
still pose a significant threat to the safety of 8pacecraft. Although individual rocks may notvigble in lower
resolution images, there may be salient featurestiepbarly texture signatures—that can be used taipteock
density. The purpose of this work is to explorsotution to this problem—namely, a means to predi®ISE-
equivalent rock density on the Martian surface filom resolution data. The low resolution data cdestd here is
captured from the Context Imagé€TX), which has a lower resolution (6 m/pixelpthHiRISE images but has a
broader span (24 km x 24 km). Moreover, an impadrtdraracteristic of CTX and HIiRISE images is thayt are
captured concurrently. Thus, there is a naturalngpbetween the two data sets.

It should be noted that the proposed approachtisi@essarily intended to be trained on one arédas§ and
tested in an entirely different area (unless thengephology and underlying rock formations are cstest).
Rather, the goal would be to apply the approach fegion with scattered HiRISE coverage in ordeffitbthe
gaps,” as shown in Fig. 1.

The problem is formulated using a Bayesian framéw8pecifically, a Bayesian NetwdrkBN) is used to
graphically model the statistical relationship betw rock density estimated from HiRISE images aatufes
extracted from CTX images. In addition, geologicalicators are incorporated into the BN in ordefudher enrich
the description of the overall problem domain. Wicts a framework, the rock density can be inferriedctly from
CTX image features. Ultimately, the predicted ragnsity is used to determine the landing safetq sfte. The
images used in this study correspond to the Phdaniting sité. The experimental results of this initial study

demonstrate that the predicted landing safety ff@RX image features is very close to the landingtyafrom
HIiRISE rock density for the same regions of Mars.

II. HIRISE and CTX Images

HIRISE is currently the highest resolution camearaoperation around another planet. HIRISE is capaibl
imaging the Martian surface in near-true color gsiCDs sensitive to red (570 nm-830 nm), blue-g(ees80 nm)
and near infrared (NIR, >790 nm) light. The instemmhhas an optimal spatial resolution of 0.3 m/pis@m a 300
km orbit. The red CCDs have a field of view (FOY)1014°, giving HiRISE images a maximum swath width-6

km. The along-track extent of HIRISE images is 18 A HiRISE color composite image has an FOV 0f30,2
corresponding to a swath width of 1.2%m
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Figure 1. Example scenario with limited HIRISE ~ Figure 2. HIRISE and CTX image pair
and full CTX coverage within a landing ellipse. (PSP_1946) of the Phoenix landing area on Mars.
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CTX is a single-channel, panchromatic camera sgadi visible light within the 500 nm to 700 nrmgge. The
camera uses a 5000 element CCD and is capableanfinm the Martian surface at an optimal resolutdré
mi/pixel from a 300 km orbit. CTX images have a neahicross-track and along-track extent of 30 Kithe spatial
resolution provided by CTX makes it especially usédr the study of surface rock distribution patieat the scale
of several meters to tens of meters.

HIRISE and CTX are capable of acquiring images oommntly, thus there is a natural pairing betwdanttvo
datasets. This makes co-registering images fromi$Rnd CTX for the purpose of extrapolating roekribution
simpler and more accurate than attempting to cstergHIRISE with images from instruments with hegh
resolutions than CTX (such as meter-scale imagen the defunct Mars Orbiter Camera). An illustrataxample
is shown in Fig. 1 with scattered HIRISE coveragthiw a landing ellipse. As can be seen from Figthe CTX
images cover the entire landing ellipse and theeefmuld be used to predict the rock density fagjimes not
covered by HIRISE. An example HIRISE and CTX imag# is shown in Fig. 2.

lll.  Geologic Setting of Study Area

A. Regional Geology

The Phoenix landing site was selected for thisystiugk to the availability of HIRISE and CTX imageains and
the familiarity of the authors with the area. Theaais located in the Borealis basin in the north®ains of Mars.
Regional slopes are generally less than 0.1° gmtbaiards the northThe landing area is situated over two distinct
geologic units within the Vastitas Borealis Forroatithe Vastitas Borealis marginal unit and Scanegon unit’.
The Vastitas Borealis marginal unit forms smoothins with occasionally dissected low plateaus. sTiit is
interpreted as a sedimentary deposit composed ¢érimatransported through a system of outflow cleds
originating in the southern highlaridd’he Scandia region unit overlies the Vastitasetis marginal unit and is
characterized by knobby terrain, interspersed wittgular topographic depressidn3his unit is thought to have
formed by a variety of subsurface volatile procesg®ssibly driven by geothermal heating from tkarby Alba
Patera volcand.

B. Geomorphology of the Phoenix Landing Area

Seelos et al.produced a series of geomorphic maps of candldatiing sites for the Phoenix mission as part of
the landing site selection process. The map arthamthnding site that was ultimately chosen ex¢enoim 67°N to
68.5°N latitude and 229°E to 238°E longitude (F3). The map was produced using visible images fthen
THEMIS instrument' combined with MOLA topograpH§ as basemaps. Geomorphic units were describedeon th
basis of their topographic expression and relagibedo differences. Although the THEMIS and MOLAsemaps
provided complete coverage of the landing aredr ther resolutions (18 m/pixel to 36 m/pixel for BMIS and
~231 m/pixel for MOLA) relative to HIRISE and CTXlited the resolvability of features in the geontacpmap to
50 m. HIiRISE and CTX coverage remains limited witthe map in Fig. 3.

Seelos et al.defined seven geomorphic units at the 50 m scétleinvthe Phoenix landing area: Highlands,
blocks/mesas, knobs, lowlands bright, lowlands darater interiors and crater ejecta. The highlandg is
characterized by smooth intercrater plains locateal distinctly higher topographic position thaa tbwlands units
(Fig. 3). The blocks/mesas unit is representeddiytdépped, elevated landforms with relief of a feneters relative
to the surrounding terrain. Individual mesas rafigen ~5 km to 50 km in diameter. The knobs unitdpresented
by rounded, often clustered hills with relief oveeal tens of meters to several hundred meterdivittual knobs
have basal diameters on the order of a few kilorsefEhe lowlands unit is divided into light and ki&ubunits
distinguished by their albedo differences. Bothusits consist of shallow, irregularly-shaped degpi@ss with
widths of several tens of kilometers. Impact cratend related ejecta deposits are distributed adies entire
Phoenix landing area. The crater interior geomarpimit is identified by the presence of bowl-shapedircular
impact structures. The crater ejecta unit is coregad material emplaced by impact processes amdsfoadial to
braided distribution patterns or circumferentiahparts outside craters.

C. Importance of Rock Distribution for Landing Site Sdection

The assessment of candidate landing sites for @gnsurface missions requires mission planneisatance
potential science return against landing site ldsaRocks on the surface of a landing site caragama spacecraft
during landing or pose navigational hazards to ieoburface missions. The hazards posed by surfacks r
necessitate the development of rock distributiorpsnéor candidate landing sites as part of the lapdiite
assessment process.
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Engineering constraints for the Phoenix missiopuséited that a landing site must be free of roaksrdto 0.33
m tall in order to allow the spacecraft's solar gdanto fully deploy and avoid puncturing the bottarhthe
spacecraft during landiRgExtensive submeter-scale imaging by HiRISE wasired in order to explicitly identify
rocks within candidate landing areas for the mizsRock distribution maps based on these HiRISEyanavere
used to select the final landing site, resulting successful landing of the spacecraft.

However, future spacecraft may be unable to depgpot submeter-scale images of candidate landieg dite
to the logistical difficulty in covering large aieat high resolution. This possibility requires tevelopment of
alternative methods for quantifying rock distrilmutiat candidate landing sites.

Units
Ci

Ce

Figure 3. Geomorphic map of Phoenix landing area.Geomorphic units are highlands (H), blocks/mesas
(B/M), knobs (K), lowland dark (Ld), lowland brigtitb), crater ejecta (Ce), crater interior (Ci).Mpdified
from Seelos et 4l)

IV. Estimating Rock Density

A. Traditional Approaches

Considerable work has been done over the yearteinthe distribution of rocks on MafsFor instance, size-
frequency distributions of rocks have been derivaded on images of the Martian surface captureithdyiking
Landers and compared against analogous sites dn*E&or landing site selection, rock abundance ptedirom
remote sensing data has been compared againsedesize-frequency distribution models for validatidn
particular, thermal inertia measurements obtaimechfinstruments like THEMIS have been used to pteslirface
rock abundance for landing site selection, as énciise of the Mars Exploration Rovers missittowever, during
the landing site selection process for the Phoenigsion, the first HIRISE images revealed far higheck
abundances than previously beliekeHence, characterization of rock abundance direcim HiRISE images
emerged as an area of critical need in order tnotifyea suitable landing site for the Phoenix nossilnitial rock
counts were performed by hénbut the sheer volume of rocks in the area wouldehmade it impossible to
complete the task prior to the target launch ditetunately, a robust automatic rock detection @lgm (see
below) was used to identify individual rocks in HFE images and as a result, rock density maps preduced for
most of the area within the Phoenix landing ellipse
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B. Automatic Rock Detection from HiRISE Images

The automatic rock detection algorithm used toneste rock density in the Phoenix landing area vias f
envisioned for on-board processing during spaceenatiry, descent, and landfhgut was shown to be highly
effective at identifying rocks in HIRISE imagedhe technique identifies rocks in two steps:Hjdow extraction,
and 2) shadow analysis.

Shadow extraction involves grouping dark regionshefimage using a technique based on Maximum Bytro
Thresholding with gamma correction (gMET). Thresling is a simple way to segment an image into éffe sets
based on pixel intensity. Using the image histogesma representation of the distribution of pixeénsities, the
gMET algorithm chooses the threshold that maximibhesentropy between shadow and nonshadow regidres.
histogram of pixel intensities is often not groupetb discernable shadow and nonshadow regionsefire,
gamma correction is applied to the HiRISE imageriher to force bimodality.

Shadow analysis is the key step for rock modeling.

The rock-shadow model is shown in Fig. 4. As can b

seen from Fig. 4, the extracted rock shadow iwifih an Cast Wumination  gpago®
ellipse that preserves the shadow area. The sejorme % &%
axis of the ellipse (dashed line) closely followse t Chating
direction of the illumination ray (solid line) arus its ¢
length provides an estimate of the shadow lengtie T shadew
rock itself is modeled as a cylinder with a radiusqual 4 / AL e hadow
to the semi-minor axis length of the shadow ellipse s
centered at the terminator. The cumulative fraetion | Comter 8 g point r
area of rock coverage on Mars is typically represtas % -
a function of rock diameter. Hence, the estimated

diameter of a detected rock is simfy2b. The shadow Figure 4. Rock model used to estimate rock size
length and known sun incidence angle are used tfrom extracted shadow region.

estimate rock height.

For the Phoenix mission, the rock detection algaritvas used to identify rocks with a diameter gretitan 1.5
m in HIRISE images. The rock detection resultsraported in terms of diameter angyj locations in the HiRISE
image. With these results, the rock density caadtienated by simply counting the number of rockthimia region
of a given spatial extent. For the Phoenix misstbe, rock density was computed over 10«00 m (hectare)
regions in the HIRISE images. An example HIiRISE gmand its corresponding rock density map obtafneu
automatic rock detection are shown in Fig. 5.

Shadow
ellipse

Hectare Lnits

10 20 30 40 a0 G0
Hectare Units

Figure 5. Rock density from HIRISE image Original HIRISE image (left) and corresponding raénsity—
number of rocks larger than 1.5 m per hectare @igh
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V. Predicting Rock Density from CTX Images

A. Feature Extraction

Although individual rocks are not visible in CTX &mges, the underlying rock formations manifest theves as
discernable textures and intensity variations. €hggterns are also consistent with the geomonatits defined in
Fig. 3. Hence, intuitively, it should be possibteextract features from CTX images that correlagd with the
underlying rock density.

The texture in CTX images is modeled using Grayel&o-occurrence Matrix (GLCM) featur@sLet P be an
LxL matrix. Each element; in P represents the number of times gray levedsidj occur with a displacement
(dx,dy):

L if I(mn)=iandl(m+dx,n+dy) =]
Pi ;Zn:{o otherwise ' @)

wherel(x,y) is the gray level (CTX) image. In this case, GLCM fegduaire computed at an orientation of %} 3bat
is, dx=1 anddy=1. The size of the matriR depends on the number of gray levels the imagd(xy). In order to
keepP reasonably small, the GLCM features are computed 46 levels. Given a co-occurrence matfxa
variety of statistical features can be computed. For this stodyGLCM texture features were considered:

=) (-)%p; 2)
i
AN @
i

Pij
=22 i) @

Om0n

fo= S (= )= )y )
[

wheref,,..., f, represent the contrast, energy, homogeneity, anélation ofP, respectively, angds, 14, oy, anda;,
are the marginal means and standard deviationg @lenrows and columns 8 The GLCM features are extracted
over an observation window of si¥¥=16, which given the 6 m/pixel resolution of CTXages, corresponds to a
100 mx 100 m (or hectare) sized region. This ensurestt@iCTX features are extracted from the same apati
region as the HIRISE rock density. Simple imagéisttes are also computed in order to capture |ldegnsity
variations. Hence, two additional featufgsy; andfs=g; are used as predictors, whegreand g; are the mean and
standard deviation of the CTX imatf&,y) over the observation windoW. An example feature set extracted from a
CTX image is shown in Fig. 6. In addition, the ratdnsity computed from the corresponding HiRISEgens also
shown. As can be seen, the CTX image featuresliyst@relate with the HiRISE rock density compuiaeer the
same region of Mars.

B. Bayesian Formulation of the Inference Problem

A Bayesian network (BN) is a directed acyclic gr@fAG)® in which the nodes represent variables and the
links between nodes represent causal dependencesegd by conditional probability distributions (@). A link
originates at a parent node and is directed towarkild node. The direction of the link indicatesisality, and thus
a dependence relationship. Nodes that exist asdimee level are considered conditionally independgath a
framework can be regarded as a knowledge reprasentzecause it encodes the joint probability & tariables.
An important feature of BNs is that computationtloé joint probability is simplified by taking adviage of the
conditional independencies encoded in the graph.

The structure of a BN is usually derived based omain knowledge of the relationships between diffier
variables. The Bayesian formulation proposed heesdot merely consider the relationship betwedRI &k rock
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Figure 6. Example CTX image features and corresporidg HiRISE rock density. a) original image, b)
contrast, c) correlation, d) energy, €) homogendjtynean, g) standard deviation, and h) HiRISEkrdensity.

density and CTX image features but also incorperate
geomorphology. As discussed earlier, the geomorphits
defined for the Phoenix landing area are relatedtht®

underlying rock formations. Hence, it is useful itwlude Q

geomorphology in the Bayesian framework. Not onlyl w

this reveal information on the statistical relatbip between

rock density and the geomorphic units but it wilcamake it e

possible to infer the geomorphic unit of a regiooni CTX

image features directly. This could potentiallyJusey useful

since geomorphic maps (as in Fig. 3) are an impbtzol @ . @

for geologists but typically involve considerableonk to

produce. The ability to infer a probable geomorphiat ) ]

from CTX image features could serve as a prelinyirsiep ~ Figure 7. BN graphical structure used to

in the overall process of defining a geomorphic map model the relationship between HIiRISE rock
Let D, G, andfy,...fy be random variables representingdensity, D, geomorphic unit, G, and CTX

rock density, geomorphic unit, and CTX image feasyr image featuresfl,...fy. The nodes that are

respectively. (In this case, the number of featiséé=6, as hidden during inference are shaded.

discussed in the previous section.) The relatignbleitween

these variables is shown graphically in Fig. 7. ) 8ncodes the joint probability distribution betwebe variables

and reveals statistical independencies. Hencgothieprobability for the BN in Fig. 7 can be watt as:

N
P(D,G, fl,...,fN)=P(D)P(G|D)I_1| P(f, 1G), (6)

As can be seen from Eq. (6), the CTX image featfires,fy are assumed to be conditionally independent. This

assumption has generally been shown to be adefguatienilar problems and does not lead to increaseat'®.
Inference in a BN involves computing the probaitit a particular node given a set of evidencehis case,

there are two variables of interest: rock denBitgnd geomorphic unis. Only the CTX image featurds... fy are

observable during inference, and thus, rock demsignd geomorphic unit G are treated as hiddens)ateshown

in Fig. 7. Having learned the CPDs between thealsdes in the BN (see following section), the praligbat nodes

D andG can be inferred directly from the features by catimg P(D| f;,...,fx) andP(G| fy, ... fy), respectively. These

two posterior probabilities are the quantities mterest and represent the probability of a padicubck density

given observed CTX image features and the prolploifia particular geomorphic unit given observeXGmage

features, respectively.
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C. Statistical Learning

Statistical learning involves computing the CPOsfra set of training observations. During the trajrprocess
all nodes are observable. That is, in additionh® €TX image features,... fy, the BN is also populated with
HIRISE rock density ground truth and the known gegghic unit obtained from the map in Fig. 3. TheRFBE
rock densityD and the CTX image featurés... fy are all continuous-valued variables with unknowstributions.
Instead of assuming a particular continuous distidim (e.g. Gaussian), all continuous variablesdiseretized and
instead the CPDs are represented as conditiondlapiliy tables (CPTs). This has several advantages, it
approximates the arbitrary shape of the CPDs, amd it makes training and inference in the BN muwbre
efficient.

The optimal choice of the discretization dependshenavailable data and the particular problenthis case, an
information theoretic approach is used to deterniree optimal number of discretization levels; speally, the
Bayesian Information Criteridh (BIC) is used to estimate the dimension of eadfticaous variable. Training is
carried out using the Bayes Net ToolbbBNT).

The HIRISE and CTX images used in this study atedi in Table 1. All of these images are from thed®ix
landing area shown in Fig. 3. As discussed eatler HIRISE and CTX images are captured concugreéagulting
in a natural pairing. However, because they docoger the same span, they need to be registeredegistration
purposes, the HIRISE images were downsampled tépéeh (the CTX image resolution) and registereddzhon
prominent features visible in both images (e.gtecg). The CTX images were then cropped so that dverlap
completely with the corresponding HiRISE imagesisT™as done in order to ensure a completely obbédata
set for training. In practice, the CTX images neetl be cropped once the BN is trained; the roclsitiercan be
estimated from the entire image, which is, ultirhgtthe main objective of this work.

Typically, large training sets are required in aorde achieve generalization. Unfortunately, the bemof
HIRISE-CTX image pairs available for this studyrédatively small. Hence, more cases (80%) wereuphad in the
training set for better generalization. As showrTable 1, training was performed on 8 of the 10getsand the
remaining 2 were used for testing. Most of the I9Rland CTX images used in this study are composkxaviand
bright (Lb) and lowland dark (Ld) material (see Tealh). There are also some prominent craters (&) related
ejecta (Ce). One image (PSP_1893) also containeblyn(K) terrain. However, it was excluded from get used
in this study because there would have been toodpvesentative cases of this particular type ro&te.

Table 1. HIRISE-CTX image pairs used in the study.

Case HIRISE-CTX Image Pair Geomorphic Units Present

PSP_1880 Lb, Ld, Ci, Ce
PSP_1906 Lb
PSP_1959 Lb, Ld, Ci, Ce

Training PSP_1972 Lb, Ld, _Ci, Ce
PSP_2104 Lb, Ci, Ce
PSP_2170 Lb, Ld, Ci, Ce
PSP_2183 Lb
PSP_2249 Lb

Testing PSP_1946 Lb, Ld, C| Ce
PSP_2012 Lb, Ld, Ci, Ce

D. Expected Landing Safety from Rock Density

Once the CPTs in the BN are learned, inferencébegrerformed on unobserved test cases. The roditgean
be inferred from CTX image features using the pastgrobability P(D| f;,...,fy). In practice, candidate sites are
selected based on landing safety, which is meashyethe probability of encountering various hazar@en,
hazard maps are used to visualize landing safetye¥ample, Table 2 shows the hazard map colongdutised on
rock density that was used during the Phoenix tapdite selection process. The acceptable to uptadde rock
density ranges shown in Table 2 are used to congphtzard map from CTX image features that is guais to the
hazard maps produced from HIiRISE rock density. &tpected landing safety from CTX image features is:

E(S| fl,...,fN)=ZsiP(DDR | f10n ), )
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where,S is landing safetys is the landing safety value corresponding to rdeksity rangdR,, Based on Table 2,
the rock density ranges are definedRes[0,3], R=(3,8], R:=(8,19], andR,=(19). The expected landing safety
E(Y f,...,fx) from CTX image features can be seen as a contswalued hazard map and is used to compare
against the hazard maps obtained from HiRISE recisity using Table 2.

A similar approach can be used to predict the gephic unit of a region (e.g. hectare) based on @fiAge
features. The number of geomorphic units is fiaiel thus the most likely geomorphic unit can beioled from
the posterioP(G| fy, ...,f):

@zargméaxP(ng| e fn) s (8)

Although the actual geomorphic unit for a regionyrba predicted using Eqg. (8), it may be more usefulefine a
measure that captures uncertainty about the gedwiagy. This measure can then be used by scientistsake a
final determination of the actual geomorphic uAg.with landing safety, an expectation can be used:

E(G|fl,...,fN)=ZgP(G=g|fl,...,f,\,), 9)
g

Table 2. Hazard map color coding based on rock deitg.

Color Rock Density Per Hectare
0-3
Yellow 4-8

Orange 9-19
>19

E. Experimental Results

Two CTX images were excluded from the trainingas®d are used to test the proposed approach. Theripos
probability P(D| f, ... fy) is inferred for each hectare in an image by pgaepiag the feature valuds... fy through
the BN. The expected landing safety can then bepoted with Eq. (7). The original CTX image, CTX had map,
HIRISE hazard map, and expected geomorphic unislaogn for test cases PSP_2012 and PSP_1946 i8 kitd
Fig. 9, respectively.

Hectare Lnits
Hectare Units
Hectare Units

40 0 0 B @ 4 &0
Hectare Units Hectare Units Hectare Units

a) b) c) d)

Figure 8. Results for PSP_2012) original CTX image, b) hazard map from CTX iméegtures, ¢) hazard
map from HiRISE rock density, and d) expected geoimmunit per hectare from CTX image features.
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Figure 9. Results for PSP_194@) original CTX image, b) hazard map from CTX iméggtures, c¢) hazard
map from HiRISE rock density, and d) expected ggammunit per hectare from CTX image features.

As can be seen from the results in Fig. 8-9, ttmattamap from CTX image features is very closénohazard
map computed from HiRISE rock density for both wsdes. For PSP_2012 (Fig. 8), the CTX hazard eragstto
under-estimate the underlying rock density in a fegions. This is most likely because the BN idesgtisome Ld
regions as Lb (Fig. 8d), which leads to a loweikrdensity prediction in a few small regions. FoPP$946 (Fig.
9), there are some regions of the CTX hazard maiptéimd to over-estimate the underlying rock dgn=iimpared
to the HIRISE hazard map. In this case, the BNtiles some Ce areas that are actually Ld (Fig. Sihce the
rock density around crater ejecta deposits tend® thigh; the BN accordingly predicts a higher rdeksity. This
can be seen in the upper right and lower rightipostof Fig. 9d. Despite these minor details, it ba argued that
the CTX hazard maps are remarkably close to thd$HRhazard maps considering they are inferred fimner
resolution image features.

It should be noted that the expected geomorphitsim@wn in Fig. 8d and Fig. 9d is on a continuotaes In
other words, the actual geomorphic unit is not gpgiredicted. Probabilistically, the map can berpreted as the
most likely geomorphic unit given a set of CTX imeafgatures. The maps in Fig. 8d and Fig. 9d coeitdesas a
preliminary assessment of the geomorphology foioregythat have not been mapped manually by scientis
Considering how demanding it is to produce a gegfrior map, the ability to quickly obtain a prelimiga
assessment might be very attractive. It shoulchéurbe noted that all of these results could bedongd with a
richer dataset.

VI. Conclusion and Future Work

This paper presented an initial exploration ofghaeblem of inferring rock density from CTX imagefares at a
level close to or equal to that obtained from awtienrock counts in HIRISE images. A Bayesian Netwaas
used to model the relationship between HiRISE rdeksity, geomorphology, and CTX image features. The
resulting probabilistic framework allows for comatibn of CTX hazard maps that are analogous tohd®ard
maps produced using rock density estimates froml$ERmages. The initial results are promising ahdvs that
the CTX and HIRISE hazard maps are visually coteelaThe results suggest that such an approadh, fafther
refinement, could serve to produce hazard maps €did images in areas that have not been imagediRySH.
Further work is needed in order to make the progpaggproach more robust. First, a larger databasddwoe
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instrumental in generalizing the results beyonew fest cases. Second, other areas beyond the iR tiaading
area should be evaluated since the geology (angeqomently, the visible features) would be quitdedént. In
addition, it would be worthwhile to evaluate otHeTX image features beyond those proposed here Bod a
compare the Bayesian approach with other macharailgy techniques.
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